MATH 54 - MIDTERM 3 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points, 2 points each)

Label the following statements as \mathbf{T} or \mathbf{F}. Write your answers in the box below!
(a) TRUE If A is diagonalizable, then A^{3} is diagonalizable.
$\left(A=P D P^{-1}\right.$, so $A^{3}=P D^{3} P=\widetilde{P} \widetilde{D} \widetilde{P}^{-1}$, where $\widetilde{P}=P$ and $\widetilde{D}=D^{3}$, which is diagonal)
(b) TRUE If A is a 3×3 matrix with 3 (linearly independent) eigenvectors, then A is diagonalizable
(This is one of the facts we talked about in lecture, the point is that to figure out if A is diagonalizable, look at the eigenvectors)
(c) TRUE If A is a 3×3 matrix with eigenvalues $\lambda=1,2,3$, then A is invertible
(No eigenvalue which is 0 , so by the IMT, A is invertible)
(d) TRUE If A is a 3×3 matrix with eigenvalues $\lambda=1,2,3$, then A is (always) diagonalizable
(this is the useful test we've been talking about in lecture, A is diagonalizable since it has 3 distinct eigenvalues)
(e) FALSE If A is a 3×3 matrix with eigenvalues $\lambda=1,2,2$, then A is (always) not diagonalizable
(Take $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$, it is diagonal, hence diagonalizable)
2. (15 points) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!
(a) FALSE If A is diagonalizable, then it is invertible.

For example, take $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. It is diagonalizable because it is diagonal, but it is not invertible!
(b) FALSE If A is invertible, then A is diagonalizable

Take $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ (this is the 'magic counterexample' we talked about in lecture). It is invertible because $\operatorname{det}(A)=1 \neq 0$. To show it is not diagonalizable, let's find the eigenvalues and eigenvectors of A :

Eigenvalues:

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-1 & -1 \\
0 & \lambda-1
\end{array}\right|=(\lambda-1)^{2}=0
$$

Which gives us $\lambda=1$.
$\underline{\text { Eigenvectors: }}$

$$
N u l(I-A)=N u l\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]
$$

Which gives $-y=0$, so $y=0$, hence:

$$
\operatorname{Nul}(I-A)=\left\{\left[\begin{array}{l}
x \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

Since there is only one (linearly independent) eigenvector, A is not diagonalizable!
3. (30 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
$$

Eigenvalues:

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{ccc}
\lambda-1 & -1 & -1 \\
1 & \lambda-3 & -1 \\
1 & -1 & \lambda-3
\end{array}\right| \\
& =(\lambda-1)\left|\begin{array}{cc}
\lambda-3 & -1 \\
-1 & \lambda-3
\end{array}\right|-(-1)\left|\begin{array}{cc}
1 & -1 \\
1 & \lambda-3
\end{array}\right|+(-1)\left|\begin{array}{cc}
1 & \lambda-3 \\
1 & -1
\end{array}\right| \\
& =(\lambda-1)\left((\lambda-3)^{2}-1\right)+(\lambda-3)+1-(-1-(\lambda-3)) \\
& =(\lambda-1)\left(\lambda^{2}-6 \lambda+9-1\right)+\lambda-3+2+\lambda-3 \\
& =\lambda^{3}-6 \lambda^{2}+8 \lambda-\lambda^{2}+6 \lambda-8+2 \lambda-4 \\
& =\lambda^{3}-7 \lambda^{2}+16 \lambda-12
\end{aligned}
$$

Now by the rational roots theorem, the only numbers a which divide -12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$, and the only numbers b which divide -1 are ± 1, hence by the rational roots theorem we should try $\lambda=\frac{a}{b}= \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$.

After trying some roots, you should get $\lambda=2$ works! Now use long division:

$$
X-2) \begin{array}{r}
X^{2}-5 X+6 \\
\frac{X^{3}-7 X^{2}+16 X-12}{-X^{3}+2 X^{2}} \\
\begin{array}{r}
-5 X^{2} \\
\frac{5 X^{2}-16 X}{}-10 X \\
6 X
\end{array} \\
\frac{-6 X+12}{0}
\end{array}
$$

So $\lambda^{3}-7 \lambda^{2}+16 \lambda-12=(\lambda-2)\left(\lambda^{2}-5 \lambda+6\right)=(\lambda-2)(\lambda-$ 2) $(\lambda-3)=(\lambda-2)^{2}(\lambda-3)$

Hence the eigenvalues are $\lambda=2,3$
Eigenvectors:
$\lambda=2$:
$N u l(2 I-A)=N u l\left[\begin{array}{lll}1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & -1 & -1\end{array}\right]=N u l\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
But then $x-y-z=0$, so $x=y+z$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
y+z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Hence:

$$
\operatorname{Nul}(2 I-A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}
$$

$\lambda=3:$

$$
N u l(3 I-A)=N u l\left[\begin{array}{ccc}
2 & -1 & -1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]=N u l\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & 1 \\
1 & -1 & 0
\end{array}\right]=N u l\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

But then $x=z$ and $y=z$, so:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
z \\
z \\
z
\end{array}\right]=z\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Hence:

$$
\operatorname{Nul}(3 I-A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Answer:

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], P=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

4. (25 points) Solve the following system $\mathrm{x}^{\prime}=A \mathrm{x}$, where:

$$
A=\left[\begin{array}{ccc}
0 & 5 & 0 \\
-1 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Eigenvalues:

$$
\operatorname{det}(\lambda I-A))=\left|\begin{array}{ccc}
\lambda & -5 & 0 \\
1 & \lambda-4 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-2)[\lambda(\lambda-4)+5]=(\lambda-2)\left(\lambda^{2}-4 \lambda+5\right)=0
$$

Which gives $\lambda=2$ and $\lambda^{2}-4 \lambda+5=0$, so $(\lambda-2)^{2}+1=0$, so $\lambda=2 \pm i$

Hence the eigenvalues are $\lambda=2,2 \pm i$

Eigenvectors:

$\underline{\lambda=2}$

$$
N u l(2 I-A)=N u l\left[\begin{array}{ccc}
-2 & 5 & 0 \\
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]=N u l\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 9 & 0 \\
0 & 0 & 0
\end{array}\right]=N u l\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

But then $x=0, y=0$, and so:
And so:

$$
\operatorname{Nul}(2 I-A)=\left\{\left[\begin{array}{l}
0 \\
0 \\
z
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

This tells us that $\mathbf{x}(t)=e^{2 t}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is a solution to the differential equation!

$$
\begin{gathered}
\underline{\lambda=2+i} \\
N u l((2+i) I-A)=N u l\left[\begin{array}{ccc}
2+i & -5 & 0 \\
1 & -2+i & 0 \\
0 & 0 & i
\end{array}\right]=N u l\left[\begin{array}{ccc}
1 & \frac{-5}{2+i} & 0 \\
1 & -2+i & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\text { However, } \frac{-5}{2+i}=\frac{-5(2-i)}{(2+i)(2-i)}=\frac{-5(2-i)}{4+1}=-2+i \text {, so: }
$$

$$
N u l((2+i) I-A)=N u l\left[\begin{array}{ccc}
1 & -2+i & 0 \\
1 & -2+i & 0 \\
0 & 0 & 1
\end{array}\right]=N u l\left[\begin{array}{ccc}
1 & -2+i & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

But then $x+(-2+i) y=0$ and $z=0$, so $x=(2-i) y$, and:

$$
\operatorname{Nul}((2+i) I-A)=\left\{\left[\begin{array}{c}
(2-i) y \\
y \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}
2-i \\
1 \\
0
\end{array}\right]\right\}
$$

This tells us that $\mathbf{x}(t)=e^{(2+i) t}\left[\begin{array}{c}2-i \\ 1 \\ 0\end{array}\right]$ is a solution to the differential equation! But we can simplify this:

$$
\begin{aligned}
e^{(2+i) t}\left[\begin{array}{c}
2-i \\
1 \\
0
\end{array}\right] & =\left(e^{2 t} \cos (t)+i e^{2 t} \sin (t)\right)\left(\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+i\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right) \\
& =\left(e^{2 t} \cos (t)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]-e^{2 t} \sin (t)\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)+i\left(e^{2 t} \sin (t)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+e^{2 t} \cos (t)\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
\end{aligned}
$$

And splitting into real and imaginary parts, and using the solution found for $\lambda=2$, we get that:

General Solution:

$$
\mathbf{x}(t)=A e^{2 t}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+B\left(e^{2 t} \cos (t)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]-e^{2 t} \sin (t)\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)+C\left(e^{2 t} \sin (t)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+e^{2 t} \cos (t)\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

5. (20 points, 10 points each)

Find the general solution to $\mathrm{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, where:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \mathbf{f}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

Note: You may use the fact that the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ is: $\mathbf{x}_{0}(t)=A e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+B e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(a) (10 points) Using undetermined coefficients

Particular solution: Usually you would guess y_{p} to be $a e^{4 t}$, so here:

Guess $\mathbf{x}_{p}(t)=\mathbf{a} e^{4 t}=\left[\begin{array}{l}A e^{4 t} \\ B e^{4 t}\end{array}\right]$
Plug this into $\mathbf{x}_{p}^{\prime}=A \mathbf{x}_{p}+\mathbf{f}$:

$$
\left[\begin{array}{l}
4 A e^{4 t} \\
4 B e^{4 t}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
A e^{4 t} \\
B e^{4 t}
\end{array}\right]+\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

which gives us:

$$
\left[\begin{array}{c}
4 A e^{4 t} \\
4 B e^{4 t}
\end{array}\right]=\left[\begin{array}{c}
A e^{4 t}+2 B e^{4 t}+e^{4 t} \\
3 B e^{4 t}+e^{4 t}
\end{array}\right]
$$

Which gives us: $4 A=A+2 B+1$ and $4 B=3 B+1$.
Which gives us $B=1$, and $A=1$

$$
\mathbf{x}_{p}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

General solution: Using the Note at the beginning of the problem:

$$
\mathbf{x}(t)=A e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+B e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

(b) (10 points) Using variation of parameters

Particular solution:

Using the Note, we get that the Wronskian matrix is:

$$
\widetilde{W}(t)=\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
0 & e^{3 t}
\end{array}\right]
$$

Now suppose $\mathbf{x}_{p}(t)=v_{1}(t)\left[\begin{array}{c}e^{t} \\ 0\end{array}\right]+v_{2}(t)\left[\begin{array}{l}e^{3 t} \\ e^{3 t}\end{array}\right]$, then use the variation of parameters formula:

$$
\widetilde{W}(t)\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\mathbf{f}(t)
$$

Here we get:

$$
\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
0 & e^{3 t}
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

So:

$$
\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
e^{t} & e^{3 t} \\
0 & e^{3 t}
\end{array}\right]^{-1}\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

But $\left[\begin{array}{cc}e^{t} & e^{3 t} \\ 0 & e^{3 t}\end{array}\right]^{-1}=\frac{1}{e^{4 t}}\left[\begin{array}{cc}e^{3 t} & -e^{3 t} \\ 0 & e^{t}\end{array}\right]=\left[\begin{array}{cc}e^{-t} & -e^{-t} \\ 0 e^{-3 t} & \end{array}\right]$ (here we used the formula $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$)

Hence:

$$
\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & -e^{-t} \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
e^{t}
\end{array}\right]
$$

Hence $v_{1}^{\prime}(t)=0$, so $v_{1}=0$, and $v_{2}^{\prime}(t)=e^{t}$, so $v_{2}(t)=e^{t}$, and finally:

$$
\begin{aligned}
\mathbf{x}_{p}(t) & =v_{1}\left[\begin{array}{c}
e^{t} \\
0
\end{array}\right]+v_{2}(t)\left[\begin{array}{l}
e^{3 t} \\
e^{3 t}
\end{array}\right] \\
& =0\left[\begin{array}{c}
e^{t} \\
0
\end{array}\right]+e^{t}\left[\begin{array}{c}
e^{3 t} \\
e^{3 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{4 t} \\
e^{4 t}
\end{array}\right]
\end{aligned}
$$

General solution: Using the Note at the beginning of the problem:

$$
\mathbf{x}(t)=A e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+B e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]
$$

Bonus (2 points)

(a) (0 points, but it'll help you for (b)) What is the general solution of $y^{\prime \prime}=-b^{2} y$
$y(t)=A_{1} \cos (b t)+B \sin (b t)$ (where A and B are constants)
(b) (2 points) Use (a) and the ideas we talked about in lecture about the matrix exponential function to solve the following system $\mathrm{x}^{\prime \prime}=A \mathrm{x}$ (note the double prime), where:

$$
A=\left[\begin{array}{cc}
2 & -3 \\
6 & 7
\end{array}\right]
$$

Hint: You may use the fact that $A=-B^{2}$, where $B=\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]$ as well as the fact that $B=P D P^{-1}$, where $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

By analogy, you may suspect the general solution to be:

$$
\mathbf{x}(t)=\cos (B t) \mathbf{a}+\sin (B t) \mathbf{b}
$$

Where B is as above and $\mathbf{a}=\left[\begin{array}{l}A \\ B\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}C \\ D\end{array}\right]$ How can we define $\cos (B t)$ and $\sin (B t)$? Well, you could use power series, but here it is easier just to use diagonalization, namely:
$B=P D P^{-1} \Rightarrow \cos (B t)=P \cos (D t) P^{-1}, \quad \sin (B t)=P \sin (D t) P^{-1}$
But here:

$$
\begin{aligned}
\cos (B t) & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
\cos (t) & 0 \\
0 & \cos (2 t)
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
\cos (t) & 0 \\
0 & \cos (2 t)
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \cos (t)-\cos (2 t) & \cos (2 t)-\cos (t) \\
2 \cos (t)-2 \cos (2 t) & 2 \cos (2 t)-\cos (t)
\end{array}\right] \\
\sin (B t) & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
\sin (t) & 0 \\
0 & \sin (2 t)
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
\sin (t) & 0 \\
0 & \sin (2 t)
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \sin (t)-\sin (2 t) & \sin (2 t)-\sin (t) \\
2 \sin (t)-2 \sin (2 t) & 2 \sin (2 t)-\sin (t)
\end{array}\right]
\end{aligned}
$$

General solution:

$$
\begin{aligned}
\mathbf{x}(t) & =\cos (B t) \mathbf{a}+\sin (B t) \mathbf{b} \\
& =A\left[\begin{array}{c}
2 \cos (t)-\cos (2 t) \\
2 \cos (t)-2 \cos (2 t)
\end{array}\right]+B\left[\begin{array}{c}
\cos (2 t)-\cos (t) \\
2 \cos (2 t)-\cos (t)
\end{array}\right] \\
& +C\left[\begin{array}{c}
2 \sin (t)-\sin (2 t) \\
2 \sin (t)-2 \sin (2 t)
\end{array}\right]+D\left[\begin{array}{c}
\sin (2 t)-\sin (t) \\
2 \sin (2 t)-\sin (t)
\end{array}\right]
\end{aligned}
$$

which you can (but don't have to) simplify to:

$$
\mathbf{x}(t)=A^{\prime} \cos (t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+B^{\prime} \sin (t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C^{\prime} \cos (2 t)\left[\begin{array}{l}
1 \\
2
\end{array}\right]+D^{\prime} \sin (2 t)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Other method:
One of your fellow students, Jens Malmquist, found an AMAZINGLY slick solution to this problem, based on a proof I did in lecture. Here it is, and please savor it as much as I did :)

We want to solve $\mathbf{x}^{\prime \prime}=A \mathbf{x}$. But since $A=-B^{2}$ and $B=$ $P D P^{-1}$, we get $A=-P D^{2} P^{-1}$, hence we need to solve:

$$
\begin{aligned}
\mathbf{x}^{\prime \prime} & =-P D^{2} P^{-1} \mathbf{x} \\
P^{-1} \mathbf{x}^{\prime \prime} & =-D^{2} P^{-1} \mathbf{x} \\
\left(P^{-1} \mathbf{x}\right)^{\prime \prime} & =-D^{2}\left(P^{-1} \mathbf{x}\right)
\end{aligned}
$$

Now let $\mathbf{y}=P^{-1} \mathbf{x}$. Then this becomes $\mathbf{y}^{\prime \prime}=-D^{2} \mathbf{y}$.
But by (a), we get $\mathbf{y}(t)=\cos (D t) \mathbf{a}+\sin (D t) \mathbf{b}$. That is:

$$
\mathbf{y}(t)=\left[\begin{array}{cc}
\cos (t) & 0 \\
0 & \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]+\left[\begin{array}{cc}
\sin (t) & 0 \\
0 & \sin (2 t)
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
A \cos (t)+C \sin (t) \\
B \cos (2 t)+D \sin (2 t)
\end{array}\right]
$$

But remember $\mathbf{y}=P^{-1} \mathbf{x}$, so $\mathbf{x}=P \mathbf{y}$, hence:

$$
\begin{aligned}
\mathbf{x}(t) & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
A \cos (t)+C \sin (t) \\
B \cos (2 t)+D \sin (2 t)
\end{array}\right] \\
& =\left[\begin{array}{c}
A \cos (t)+C \sin (t)+B \cos (2 t)+D \sin (2 t) \\
A \cos (t)+C \sin (t)+2 B \cos (2 t)+2 D \sin (2 t)
\end{array}\right] \\
& =A \cos (t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C \sin (t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+B \cos (2 t)\left[\begin{array}{l}
1 \\
2
\end{array}\right]+D \sin (2 t)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

Rearranging (courtesy Jens: "or as Nicholas Cage would say: Put it in! The right file, according to alphabetical order! You know: A, B, C, D, ‥ ! HUH!"), we get:

$$
\mathbf{x}(t)=A \cos (t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+B \cos (2 t)\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C \sin (t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+D \sin (2 t)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Congratulations again, Jens, this is amazing!!! :D

