
MATH 54 − MIDTERM 3 − SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points, 2 points each)

Label the following statements as T or F. Write your answers
in the box below!

(a) TRUE If A is diagonalizable, then A3 is diagonalizable.

(A = PDP−1, so A3 = PD3P = P̃ D̃P̃−1, where P̃ = P and
D̃ = D3, which is diagonal)

(b) TRUE If A is a 3 × 3 matrix with 3 (linearly independent)
eigenvectors, then A is diagonalizable

(This is one of the facts we talked about in lecture, the point is
that to figure out if A is diagonalizable, look at the eigenvec-
tors)

(c) TRUE If A is a 3 × 3 matrix with eigenvalues λ = 1, 2, 3,
then A is invertible

(No eigenvalue which is 0, so by the IMT, A is invertible)

(d) TRUE If A is a 3 × 3 matrix with eigenvalues λ = 1, 2, 3,
then A is (always) diagonalizable

(this is the useful test we’ve been talking about in lecture, A is
diagonalizable since it has 3 distinct eigenvalues)
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(e) FALSE If A is a 3 × 3 matrix with eigenvalues λ = 1, 2, 2,
then A is (always) not diagonalizable

(Take A =

1 0 0
0 2 0
0 0 2

, it is diagonal, hence diagonalizable)

2. (15 points) Label the following statements as TRUE or FALSE. In
this question, you HAVE to justify your answer!!!

(a) FALSE If A is diagonalizable, then it is invertible.

For example, take A =

[
0 0
0 0

]
. It is diagonalizable because it

is diagonal, but it is not invertible!

(b) FALSE If A is invertible, then A is diagonalizable

TakeA =

[
1 1
0 1

]
(this is the ‘magic counterexample’ we talked

about in lecture). It is invertible because det(A) = 1 6= 0.
To show it is not diagonalizable, let’s find the eigenvalues and
eigenvectors of A:

Eigenvalues:

det(λI − A) =
∣∣∣∣λ− 1 −1

0 λ− 1

∣∣∣∣ = (λ− 1)2 = 0

Which gives us λ = 1.

Eigenvectors:

Nul(I − A) = Nul

[
0 −1
0 0

]
Which gives −y = 0, so y = 0, hence:
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Nul(I − A) =
{[

x
0

]}
= Span

{[
1
0

]}

Since there is only one (linearly independent) eigenvector, A is
not diagonalizable!

3. (30 points) Find a diagonal matrix D and an invertible matrix P
such that A = PDP−1, where:

A =

 1 1 1
−1 3 1
−1 1 3



Eigenvalues:

det(λI − A) =

∣∣∣∣∣∣
λ− 1 −1 −1
1 λ− 3 −1
1 −1 λ− 3

∣∣∣∣∣∣
=(λ− 1)

∣∣∣∣λ− 3 −1
−1 λ− 3

∣∣∣∣− (−1)
∣∣∣∣1 −1
1 λ− 3

∣∣∣∣+ (−1)
∣∣∣∣1 λ− 3
1 −1

∣∣∣∣
=(λ− 1)((λ− 3)2 − 1) + (λ− 3) + 1− (−1− (λ− 3))

=(λ− 1)(λ2 − 6λ+ 9− 1) + λ− 3 + 2 + λ− 3

=λ3 − 6λ2 + 8λ− λ2 + 6λ− 8 + 2λ− 4

=λ3 − 7λ2 + 16λ− 12

Now by the rational roots theorem, the only numbers a which
divide −12 are ±1,±2,±3,±4,±6,±12, and the only numbers b
which divide −1 are ±1, hence by the rational roots theorem we
should try λ = a

b
= ±1,±2,±3,±4,±6,±12.

After trying some roots, you should get λ = 2 works! Now use
long division:



4 PEYAM RYAN TABRIZIAN

X2 − 5X + 6

X − 2
)

X3 − 7X2 + 16X − 12
−X3 + 2X2

− 5X2 + 16X
5X2 − 10X

6X − 12
− 6X + 12

0
So λ3 − 7λ2 + 16λ− 12 = (λ− 2)(λ2 − 5λ+ 6) = (λ− 2)(λ−

2)(λ− 3) = (λ− 2)2(λ− 3)

Hence the eigenvalues are λ = 2, 3

Eigenvectors:

λ = 2:

Nul(2I − A) = Nul

1 −1 −11 −1 −1
1 −1 −1

 = Nul

1 −1 −10 0 0
0 0 0


But then x− y − z = 0, so x = y + zxy

z

 =

y + z
y
z

 = y

11
0

+ z

10
1


Hence:

Nul(2I − A) = Span


11
0

 ,
10
1


λ = 3:

Nul(3I−A) = Nul

2 −1 −11 0 −1
1 −1 0

 = Nul

1 0 −1
0 −1 1
1 −1 0

 = Nul

1 0 −1
0 1 −1
0 0 0


But then x = z and y = z, so:xy

z

 =

zz
z

 = z

11
1
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Hence:

Nul(3I − A) = Span


11
1


Answer:

D =

2 0 0
0 2 0
0 0 3

 , P =

1 1 1
1 0 1
0 1 1



4. (25 points) Solve the following system x′ = Ax, where:

A =

 0 5 0
−1 4 0
0 0 2



Eigenvalues:

det(λI−A)) =

∣∣∣∣∣∣
λ −5 0
1 λ− 4 0
0 0 λ− 2

∣∣∣∣∣∣ = (λ−2) [λ(λ− 4) + 5] = (λ−2)(λ2−4λ+5) = 0

Which gives λ = 2 and λ2− 4λ+5 = 0, so (λ− 2)2 +1 = 0, so
λ = 2± i

Hence the eigenvalues are λ = 2, 2± i

Eigenvectors:

λ = 2

Nul(2I − A) = Nul

−2 5 0
1 2 0
0 0 0

 = Nul

1 2 0
0 9 0
0 0 0

 = Nul

1 0 0
0 1 0
0 0 0


But then x = 0, y = 0, and so:
And so:
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Nul(2I − A) =


00
z

 = Span


00
1


This tells us that x(t) = e2t

00
1

 is a solution to the differential

equation!

λ = 2 + i

Nul((2 + i)I − A) = Nul

2 + i −5 0
1 −2 + i 0
0 0 i

 = Nul

1 −5
2+i

0
1 −2 + i 0
0 0 1


However, −5

2+i
= −5(2−i)

(2+i)(2−i) =
−5(2−i)

4+1
= −2 + i, so:

Nul((2 + i)I − A) = Nul

1 −2 + i 0
1 −2 + i 0
0 0 1

 = Nul

1 −2 + i 0
0 0 0
0 0 1


But then x+ (−2 + i)y = 0 and z = 0, so x = (2− i)y, and:

Nul((2 + i)I − A) =


(2− i)yy

0

 = Span


2− i1

0


This tells us that x(t) = e(2+i)t

2− i1
0

 is a solution to the dif-

ferential equation! But we can simplify this:

e(2+i)t

2− i1
0

 =
(
e2t cos(t) + ie2t sin(t)

)21
0

+ i

−10
0


=

e2t cos(t)
21
0

− e2t sin(t)
−10

0

+ i

e2t sin(t)
21
0

+ e2t cos(t)

−10
0


And splitting into real and imaginary parts, and using the solution

found for λ = 2, we get that:
General Solution:
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x(t) = Ae2t

00
1

+B
e2t cos(t)

21
0

− e2t sin(t)
−10

0

+C

e2t sin(t)
21
0

+ e2t cos(t)

−10
0



5. (20 points, 10 points each)
Find the general solution to x′ = Ax+ f , where:

A =

[
1 2
0 3

]
, f(t) =

[
e4t

e4t

]

Note: You may use the fact that the general solution to x′ = Ax

is: x0(t) = Aet
[
1
0

]
+Be3t

[
1
1

]
(a) (10 points) Using undetermined coefficients

Particular solution: Usually you would guess yp to be ae4t, so
here:

Guess xp(t) = ae4t =

[
Ae4t

Be4t

]
Plug this into x′p = Axp + f :[

4Ae4t

4Be4t

]
=

[
1 2
0 3

] [
Ae4t

Be4t

]
+

[
e4t

e4t

]
which gives us:[

4Ae4t

4Be4t

]
=

[
Ae4t + 2Be4t + e4t

3Be4t + e4t

]
Which gives us: 4A = A+ 2B + 1 and 4B = 3B + 1.

Which gives us B = 1, and A = 1

xp(t) =

[
e4t

e4t

]
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General solution: Using the Note at the beginning of the prob-
lem:

x(t) = Aet
[
1
0

]
+Be3t

[
1
1

]
+

[
e4t

e4t

]

(b) (10 points) Using variation of parameters
Particular solution:
Using the Note, we get that the Wronskian matrix is:

W̃ (t) =

[
et e3t

0 e3t

]
Now suppose xp(t) = v1(t)

[
et

0

]
+ v2(t)

[
e3t

e3t

]
, then use the

variation of parameters formula:

W̃ (t)

[
v′1
v′2

]
= f(t)

Here we get: [
et e3t

0 e3t

] [
v′1
v′2

]
=

[
e4t

e4t

]
So: [

v′1
v′2

]
=

[
et e3t

0 e3t

]−1 [
e4t

e4t

]

But
[
et e3t

0 e3t

]−1
= 1

e4t

[
e3t −e3t
0 et

]
=

[
e−t −e−t
0e−3t

]
(here we

used the formula
[
a b
c d

]−1
= 1

ad−bc

[
d −b
−c a

]
)

Hence: [
v′1
v′2

]
=

[
e−t −e−t
0 e−3t

] [
e4t

e4t

]
=

[
0
et

]
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Hence v′1(t) = 0, so v1 = 0, and v′2(t) = et, so v2(t) = et, and
finally:

xp(t) =v1

[
et

0

]
+ v2(t)

[
e3t

e3t

]
=0

[
et

0

]
+ et

[
e3t

e3t

]
=

[
e4t

e4t

]

General solution: Using the Note at the beginning of the prob-
lem:

x(t) = Aet
[
1
0

]
+Be3t

[
1
1

]
+

[
e4t

e4t

]

Bonus (2 points)

(a) (0 points, but it’ll help you for (b)) What is the general solution
of y′′ = −b2y

y(t) = A1 cos(bt) +B sin(bt) (where A and B are constants)

(b) (2 points) Use (a) and the ideas we talked about in lecture about
the matrix exponential function to solve the following system
x′′ = Ax (note the double prime), where:

A =

[
2 −3
6 7

]
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Hint: You may use the fact thatA = −B2, whereB =

[
0 1
−2 3

]
as well as the fact that B = PDP−1, where P =

[
1 1
1 2

]
,

D =

[
1 0
0 2

]

By analogy, you may suspect the general solution to be:

x(t) = cos(Bt)a+ sin(Bt)b

Where B is as above and a =

[
A
B

]
and b =

[
C
D

]
How can we

define cos(Bt) and sin(Bt)? Well, you could use power series,
but here it is easier just to use diagonalization, namely:

B = PDP−1 ⇒ cos(Bt) = P cos(Dt)P−1, sin(Bt) = P sin(Dt)P−1

But here:

cos(Bt) =

[
1 1
1 2

] [
cos(t) 0
0 cos(2t)

] [
1 1
1 2

]−1
=

[
1 1
1 2

] [
cos(t) 0
0 cos(2t)

] [
2 −1
−1 1

]
=

[
2 cos(t)− cos(2t) cos(2t)− cos(t)
2 cos(t)− 2 cos(2t) 2 cos(2t)− cos(t)

]

sin(Bt) =

[
1 1
1 2

] [
sin(t) 0
0 sin(2t)

] [
1 1
1 2

]−1
=

[
1 1
1 2

] [
sin(t) 0
0 sin(2t)

] [
2 −1
−1 1

]
=

[
2 sin(t)− sin(2t) sin(2t)− sin(t)
2 sin(t)− 2 sin(2t) 2 sin(2t)− sin(t)

]
General solution:
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x(t) = cos(Bt)a+ sin(Bt)b

=A

[
2 cos(t)− cos(2t)
2 cos(t)− 2 cos(2t)

]
+B

[
cos(2t)− cos(t)
2 cos(2t)− cos(t)

]
+C

[
2 sin(t)− sin(2t)
2 sin(t)− 2 sin(2t)

]
+D

[
sin(2t)− sin(t)
2 sin(2t)− sin(t)

]
which you can (but don’t have to) simplify to:

x(t) = A′ cos(t)

[
1
1

]
+B′ sin(t)

[
1
1

]
+ C ′ cos(2t)

[
1
2

]
+D′ sin(2t)

[
1
2

]

Other method:

One of your fellow students, Jens Malmquist, found an AMAZ-
INGLY slick solution to this problem, based on a proof I did
in lecture. Here it is, and please savor it as much as I did :)

We want to solve x′′ = Ax. But since A = −B2 and B =
PDP−1, we get A = −PD2P−1, hence we need to solve:

x′′ =− PD2P−1x

P−1x′′ =−D2P−1x(
P−1x

)′′
=−D2

(
P−1x

)
Now let y = P−1x. Then this becomes y′′ = −D2y.

But by (a), we get y(t) = cos(Dt)a+ sin(Dt)b. That is:

y(t) =

[
cos(t) 0
0 cos(2t)

] [
A
B

]
+

[
sin(t) 0
0 sin(2t)

] [
C
D

]
=

[
A cos(t) + C sin(t)
B cos(2t) +D sin(2t)

]
But remember y = P−1x, so x = Py, hence:



12 PEYAM RYAN TABRIZIAN

x(t) =

[
1 1
1 2

] [
A cos(t) + C sin(t)
B cos(2t) +D sin(2t)

]
=

[
A cos(t) + C sin(t) +B cos(2t) +D sin(2t)
A cos(t) + C sin(t) + 2B cos(2t) + 2D sin(2t)

]
=A cos(t)

[
1
1

]
+ C sin(t)

[
1
1

]
+B cos(2t)

[
1
2

]
+D sin(2t)

[
1
2

]

Rearranging (courtesy Jens: “or as Nicholas Cage would say:
Put it in! The right file, according to alphabetical order! You
know: A, B, C, D, · · · ! HUH!”), we get:

x(t) = A cos(t)

[
1
1

]
+B cos(2t)

[
1
2

]
+ C sin(t)

[
1
1

]
+D sin(2t)

[
1
2

]

Congratulations again, Jens, this is amazing!!! :D


